Corrigé TD 5 - Stabilité

Exercice 3. (*) L'équation differentielle s'écrit X' = F(X) où

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto (\sin(x+y), e^x - 1).$$

La fonction F ne dépendant pas du temps, c'est une équation autonome.

1. Comme il n'y a pas de dépendance en t, il suffit de vérifier de vérifier que F est localement lipschitzienne pour appliquer le théorème d'existence et d'unicité de Cauchy-Lipschitz. F étant C^1 sur \mathbb{R}^2 , elle est en particulier localement lipschitzienne. D'où pour tout $(x_0, y_0) \in \mathbb{R}^2$, il existe une unique solution maximale X = (x, y) à l'équation définie sur un intervalle ouvert I contenant 0 telle que $(x(0), y(0)) = (x_0, y_0)$.

2. Soit (x, y) une solution maximale de l'équation sur I telle que $(x(0), y(0)) = (x_0, y_0)$. Alors on a, pour tout $t \in I$, $|x'(t)| = |\sin(x(t) + y(t))| \le 1$. De plus, $x \in C^1(I)$, donc d'après l'inégalité des accroissements finis, on a

$$\forall t \in I, \quad |x(t) - x_0| = |x(t) - x(0)| \le |t|.$$

Notons $I=]T_-,T_+[$. Supposons que $T_+<+\infty,$ alors d'après le théorème de sortie de tout compact, (x,y) sort définitivement de tout compact de \mathbb{R}^2 lorsque t tend vers T_+ . Mais on a vu que pour tout $t\in [0,T_+[,|x(t)-x_0|\leq |t|\leq T_+,$ et donc $x(t)\in [x_0-T_+,x_0+T_+]$. Ceci implique notamment que pour tout $t\in [0,T_+[,y'(t)=e^{x(t)}-1\in [-1,e^{x_0+T_+}-1],$ et donc $|y'(t)|\leq 1+e^{x_0+T_+}$. Par l'inégalité des accroissements finis, ceci implique

$$\forall t \in [0, T_+[, \quad |y(t) - y_0| \le t(1 + e^{x_0 + T_+}) \le T_+(1 + e^{x_0 + T_+})$$

d'où, posant $M_{+} = T_{+}(1 + e^{x_0 + T_{+}}),$

$$\forall t \in [0, T_+[, y(t) \in [y_0 - M_+, y_0 + M_+].$$

Ainsi, pour tout $t \in [0, T_+[, (x(t), y(t))]$ est toujours dans le compact

$$K = [x_0 - T_+, x_0 + T_+] \times [y_0 - M_+, y_0 + M_+].$$

En particulier, (x, y) ne sort pas définitivement du compact K lorsque t tend vers T_+ , ce qui est une contradiction. Ainsi nécessairement $T_+ = +\infty$. Un raisonnement similaire aboutit à $T_- = -\infty$, et donc $I = \mathbb{R}$. La solution est donc globale.

3. On cherche les points d'équilibre du système, c'est-à-dire les points $(x,y) \in \mathbb{R}^2$ tels que F(x,y) = 0. On trouve

$$F(x,y) = 0 \iff \left\{ \begin{array}{ll} \sin(x+y) &= 0 \\ e^x - 1 &= 0 \end{array} \right. \iff \left\{ \begin{array}{ll} \sin(y) &= 0 \\ x &= 0 \end{array} \right. \iff (x,y) \in \{0\} \times \pi \mathbb{Z}.$$

Soit un point d'équilibre du système, qui est donc de la forme $(0, k\pi) \in \{0\}$ avec $k \in \mathbb{Z}$, et linéarisons le système au voisinage de celui-ci. La matrice jacobienne de F en $(0, k\pi)$ est

$$A = \begin{pmatrix} (-1)^k & (-1)^k \\ 1 & 0 \end{pmatrix},$$

et le système linéarisé associé est donc X' = AX. On s'intéresse ensuites aux valeurs propres de A, qui sont les racines du polynôme

$$\det(A - XI) = ((-1)^k - X)(-X) - (-1)^k = X^2 + (-1)^{k+1}X + (-1)^{k+1}.$$

— Si k est pair, le discriminant de ce trinôme est $\Delta = 1 + 4(-1)^k = 5$, et il admet donc deux racines distinctes

$$\lambda_1 = \frac{1 - \sqrt{5}}{2} < 0, \quad \text{ et } \quad \lambda_2 = \frac{1 + \sqrt{5}}{2} > 0.$$

Ainsi il y a une valeur propre strictement positive, donc le point d'équilibre est instable.

— Si k est impair, on trouve deux racines complexes conjuguées

$$\lambda_1 = \frac{-1 - i\sqrt{3}}{2} < 0$$
, et $\lambda_2 = \frac{-1 + i\sqrt{3}}{2} > 0$.

Comme les deux valeurs propres ont une partie réelle strictement négative, le point d'équilibre est asymptotiquement stable.

Exercice 4. Soit $k \in \mathbb{R}$. On considère l'équation différentielle X' = F(X) où

$$F: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$
$$(x,y) \quad \longmapsto \quad (-kx+y-x^3,-x).$$

Même si ce n'est pas demandé, on peut montrer que pour tout $t_0 \in \mathbb{R}$ et tout $(x_0, y_0) \in \mathbb{R}^2$ il existe une unique solution maximale X = (x, y) définie sur un intervalle ouvert I contenant t_0 telle que $(x(t_0), y(t_0)) = (x_0, y_0)$. En effet, la fonction F ne dépend pas du temps (il s'agit donc d'une équation autonome), et il suffit de vérifier que F est localement lipschitzienne pour appliquer le théorème d'existence et d'unicité de Cauchy-Lipschitz. Or ici F est infiniment dérivable (chaque composante est une fonction polynomiale à deux variables).

1. Il s'agit de trouver les $(x,y) \in \mathbb{R}^2$ tels que F(x,y) = 0. On trouve

$$F(x,y) = 0 \iff \left\{ \begin{array}{rcl} -kx + y - x^3 & = & 0 \\ -x & = & 0 \end{array} \right. \iff (x,y) = (0,0).$$

D'où (0,0) est l'unique point d'équilibre du système.

2. Puisque $x^3 = o(||(x, y)||)$, on a

$$F(x,y) = (0,0) + (-kx + y, -x) + o(\|(x,y)\|)$$

de sorte que le système linéarisé autour de (0,0) est X'=AX, où

$$A = \begin{pmatrix} -k & 1 \\ -1 & 0 \end{pmatrix}.$$

- 3. Supposons $k \neq 0$. Les valeurs propres de A sont les racines du polynôme $\det(A XI) = X^2 + kX + 1$, dont le discriminant est $\Delta = k^2 4 = (k-2)(k+2)$. Distinguons deux cas :
- Si $k \in]-2,0[\cup]0,2[$, $\Delta < 0$, et on a deux valeurs propres complexes

$$\lambda_1 = \frac{-k - i\sqrt{4 - k^2}}{2}, \quad \text{ et } \quad \lambda_2 = \frac{-k + i\sqrt{4 - k^2}}{2},$$

de partie réelle -k. Si $k \in]-2,0[$, la partie réelle est strictement positive et donc (0,0) est instable. Si $k \in]0,2[$, la partie réelle est strictement négative et le point d'équilibre (0,0) est asymptotiquement stable.

— Si $k \in]-\infty, -2[\cup]2, +\infty[, \Delta > 0$ et on a deux valeurs propres réelles

$$\lambda_1 = \frac{-k - \sqrt{k^2 - 4}}{2}, \quad \text{et} \quad \lambda_2 = \frac{-k + \sqrt{k^2 - 4}}{2}.$$

Si $k \in]-\infty, -2[$, $\lambda_2 > 0$, ce qui suffit à dire que (0,0) est un point d'équilibre instable. Si $k \in]2, +\infty[$, $\lambda_1 < 0$, et puisque $k > \sqrt{k^2 - 4}$, on a aussi $\lambda_2 < 0$, donc les deux valeurs propres sont strictement négatives, et (0,0) est un point d'équilibre localement asymptotiquement stable.

En résumé, l'origine est instable si k < 0, et localement asymptotiquement stable si k > 0.

4. Si k=0, le calcul de la question précédente montre que la matrice associée au système linéarisé autour de (0,0) admet i et -i comme valeurs propres, qui ont une partie réelle nulle. On ne peut donc pas conclure de cette manière quant à la stabilité ou l'instabilité de l'origine. Procédons autrement. Pour $(x_0, y_0) \in \mathbb{R}^2$, considérons X = (x, y) une solution maximale sur un intervalle ouvert I contenant 0 telle que $(x(0), y(0)) = (x_0, y_0)$. Alors essayons d'estimer comment varie $\|(x(t), y(t))\|^2 = x(t)^2 + y(t)^2$. Calculons

$$\frac{\mathrm{d}}{\mathrm{d}t} \| (x(t), y(t)) \|^2 = 2x'(t)x(t) + 2y'(t)y(t) = 2(y(t) - x(t)^3)x(t) - 2x(t)y(t) = -2x(t)^4 \le 0.$$

Ainsi l'application $t \mapsto ||x(t), y(t)||^2$ est décroissante, de sorte que

$$\forall t \in I \cap]0, +\infty[, \quad \|(x(t), y(t))\| \le \|(x_0, y_0)\|.$$

(Remarquons qu'en particulier le théorème de sortie de tout compact nous dit que sup $I=+\infty$). Ainsi, quel que soit $\varepsilon>0$, choisissant $\delta=\varepsilon$, quel que soit $(x_0,y_0)\in\mathbb{R}^2$ tel que $\|(x_0,y_0)\|\leq \delta$, toute solution maximale (x,y) telle que $(x(0),y(0))=(x_0,y_0)$ satisfait $\forall t>0$, $\|(x(t),y(t))\|\leq \varepsilon$. Ceci dit précisément que (0,0) est un point d'équilibre stable.